Журнал о Медицине
rss новости rss статьи rss все архив
Словарь научных терминов

Вольфрам

ВОЛЬФРАМ [от нем. Wolf - волк, Rahm - сливки ("волчья пена" - назв. дано в 16 в., т.к. мешал выплавке олова, переводя его в шлак); лат. Wolframium] W, хим. элемент VI гр. периодич. системы, ат. н. 74, ат. м. 183,85. Прир. В. состоит из пяти стабильных изотопов с мас. ч. 180 (0,135%), 182 (26,41%), 183 (14,4%), 184 (30,64%) и 186 (28,41%). Поперечное сечение захвата тепловых нейтронов 19,2*10-28 м2. Конфигурация внеш. электронной оболочки 5d46s2; степени окисления +2; +3, +4, +5, +6 (наиб, характерна); энергия ионизации W° -> W+ -> W2+ соотв. 770 и 1710 кДж/моль; электроотрицательность по Полингу 1,7; сродство к электрону 0,5 эВ; работа выхода электронов 4,55 эВ; электронная эмиссия (мА/см2): 1,5*10-10 (1100 К), 2,3*10-1 (1900 К), 298 (2500 К); ат. радиус 0,1368 нм; ионные радиусы (в скобках указаны координац. числа) W4 + 0,080 нм (6), W
6
+ 0,065 нм (4), 0,074 нм (6).

В. мало распространен в природе. Содержание в земной коре 1*10-4 % по массе. Известно ок. 15 собств. минералов, большинство из них - вольфраматы. наиб. важные минералы - вольфрамит (Fe, Mn)WO4 [его разновидности - ферберит (Fe : Mn > 4 :1) и гюбнерит (Mn : Fe > 4 :1)] и шеелит CaWO4. наиб. крупные пром. месторождения в КНР, СССР, КНДР, Южной Корее, США, Таиланде, Канаде, Боливии, Австралии, Бразилии, Португалии. Мировые запасы В. в рудах 1815 тыс. т (1976).

Свойства. В. - металл светло-серого цвета. Осн. устойчивая модификация-http://www.pora.ru/image/encyclopedia/5/2/8/4528.jpegW, решетка объемноцентриров. кубическая (а = 0,31589 нм, z = 2, пространств. группа Im3m). Существует такжеhttp://www.pora.ru/image/encyclopedia/5/2/9/4529.jpegмодификация с кубич. кристаллич. решеткой (z = 8, пространств. группа Рт3п); образуется при восстановлении тонкого слоя WO3 сухим Н2 при 440-630 °С; выше 630°С необратимо превращ. вhttp://www.pora.ru/image/encyclopedia/5/3/0/4530.jpegW. В. - самый тугоплавкий металл, т. пл. 3380+10 °С, т. кип. 5900-6000°С; плотн. 19,3 г/см3, жидкого 16,65 г/см3; С° 24,27 Дж/(моль*К);http://www.pora.ru/image/encyclopedia/5/3/1/4531.jpeg 46 кДж/моль,http://www.pora.ru/image/encyclopedia/5/3/2/4532.jpeg 850 кДж/моль (О К); So298 32,6 Дж/(моль*К); ур-ние температурной зависимости давления пара над твердым В. в интервале 2000-3500 К: lg р (мм рт. ст.) = 42000/Г + 9,84 -— 0,146T-lg Т — 0,164*10-3T; скорость испарения [в г/(см2*с)1 2,18*10-12 (2200 К), 1,06*10-6 (3000 К), 2,06 х 10-5 (3273 К); температурный коэф. линейного расширения (К-1): 4,1*10-6 (298 К), 6,5*10-6 (2273 К), 7,1*10-6 (2673 К); теплопроводность [Вт/(м*К)]: 153 (298 К), 105 (1873 К); температуропроводность (м2/с): 3,17*103 (1873 К), 2,3*103 (2873 К); излучательная способность (Вт/см2): 23,65 (2200 К), 112,5 (2800 К), 203 (3200 К);http://www.pora.ru/image/encyclopedia/5/3/3/4533.jpeg (Ом*м): 5,5*10-8 (298 К), 55,7*10-8 (2000 К), 108,5*10-8 (2500 К); температурный коэф.http://www.pora.ru/image/encyclopedia/5/3/4/4534.jpeg 5,0*10-3 К -1 (273 - 473 К); т-ра перехода в сверхпроводящее состояние 0,0160 К. В. парамагнитен, магн. восприимчивость 0,32*10-9. Мех. св-ва В. сильно зависят от способа его получения, чистоты и предшествующей мех. и термич. обработки. Техн. В. хрупок при нормальной т-ре, при 200-500°С переходит в пластичное состояние; высокочистыи монокристаллич. В. пластичен вплоть до — 196 °С. Твердость по Бринеллю для спеченного штабика 2000-2300 МПа, для листа толщ. 2 мм 3500-4000 МПа; для проволоки модуль упругости 380-410 ГПа (298 К); в зависимости от диаметраhttp://www.pora.ru/image/encyclopedia/5/3/5/4535.jpegдля неотожженной проволоки 1800-4150 МПа, для отожженной 900-1300 МПа. Коэф. сжимаемости В. ниже, чем у всех металлов. По длительности сохранения прочности при 800-1300 °С он значительно превосходит Мо, Та и Nb. Компактный В. устойчив на воздухе, при 400 °С начинает окисляться, выше 500 °С быстро окисляется до триоксида WO3 (см. Вольфрама оксиды). С холодной и горячей водой не взаимод., парами воды выше 600 °С окисляется до WO3, WO2 и др. оксидов. На холоду устойчив к действию соляной к-ты, H2SO4, HNO3, а также смеси HNO3 и H2SO4, активно взаимод. со смесью к-т HNO3 и HF, медленно - с Н2О2. При 90-100 °С устойчив к действию фтористоводородной к-ты, слабо взаимод. с соляной к-той, H2SO4 и Н2СrО4, несколько сильней - с HNO3 и царской водкой. Не взаимод. с р-рами щелочей и NH3 на холоду, слабо реагирует с ними при нагр. в присут. О2. Быстро окисляется в расплавленном NaOH или КОН при доступе воздуха или в присут. окислителей (NaNO3, NaNO2 и др.) с образованием волъфраматов.

С азотом В. реагирует выше 1500°С; при 2300-2500 °С образуется нитрид WN2, к-рый в отсутствии N2 разлагается выше 800 °С. Водород не реагирует с В. вплоть до т-ры плавления. В В. мало растворимы О2 (менее 10-4% по массе), N2 (~ 10-5%) и Н2 (менее 10-4%), с F2 выше 150°С В. образует фториды (см. Вольфрама гексафторид), с С12 выше 800°С - хлориды, с Вr2 и I2 при 600-700°С - соотв. бромиды и иодиды (см. Вольфрама галогениды).

С парами S и Se, а также с H2S и H2Se выше 400 °С образует соотв. дисульфид WS2 (см. Вольфрама сульфиды)и диселенид WSe2, с кремнием и бором выше 1400°С - соотв. силициды (WSi2 и W5Si3) и бориды (W2B, WB, W2B5 и др.). При 700-800 °С SO2 окисляет В. до оксидов, СО2 выше 1200°С - до WO2, оксиды N выше 600°С - до WO3. Взаимод. В. с углеводородами при 1100-1200 °С приводит к карбидам. До ~ 1400°С В. устойчив в атмосфере СО, при более высокой т-ре образуются вольфрама карбиды. При 200-300 °С и давлении СО 20 МПа В. (в возбужденном состоянии) образует с СО гексакарбонил W (СО)6 - бесцв. кристаллы; т. пл. 169°С, т. кип. 175°С; не раств. в воде; выше 350°С разлагается на W и СО; применяют как катализатор полимеризации олефинов, для нанесения вольфрамовых покрытий на металлы, керамику, графит, для синтеза воль-фраморг. соед. (см. также Карбонилы металлов).

В. очень медленно взаимод. с Hg, Na, К, Ga, Mg даже при 600 °С. Он устойчив при 600 °С в сплаве Вуда (см. Свинца сплавы), при 1000°С - в эвтектич. сплаве Na-K, до 1680°С не реагирует с расплавленными Bi, Ca, Си и Sn. При 1100oС В. медленно раств. в U, выше 700 °С реагирует с жидким А1, давая интерметаллиды. В. способен образовывать сплавы со мн. металлами (см. Вольфрама сплавы).

Важнейшие кислородные соед. B. - WO3, вольфрамовая к-та WO32О и ее соли (вольфраматы). Известны поливольфраматы - соли высокомол. изополи- и акваполикислот, а также гетерополивольфраматы - соли гетерополивольфрамовых к-т (см. Гетерополисоединения). При восстановлении вольфраматов щелочных металлов получают вольфрамовые бронзы-кристаллич. в-ва с металлич. св-вами (см. Бронзы оксидные).

Диселенид вольфрама WSe2 - темно-серые кристаллы с гексагон. решеткой (а = 0,3280 нм, с=1,2950нм, пространств. группа p63/mmc); выше 550 °С окисляется на воздухе до WO3; в вакууме выше 900 °С диссоциирует на W и Se. Не раств. в воде; не взаимод. с разб. НС1, H2SO4, р-рами щелочей. Окисляется HNO3. Получают взаимод. паров Se или H2Se с W или WO3 при 600-800 °С. Полупроводник р-типа; используется как твердая смазка.

Дисилицид вольфрама WSi2 - голубовато-серые кристаллы с тетрагон. решеткой (а = 0,3212 нм, с = = 0,7880 нм, z = 2, пространств. ггруппа I4/mmm); т. пл. 2165 °С; плотн. 9,25 г/см3;http://www.pora.ru/image/encyclopedia/5/3/6/4536.jpeg - 93,7 кДж/моль;http://www.pora.ru/image/encyclopedia/5/3/7/4537.jpeg 12,5*10-8 Ом*м;http://www.pora.ru/image/encyclopedia/5/3/8/4538.jpeg 1269 МПа (20°С); микротвердость 10740 МПа (нагрузка 50 г). Не раств. в воде; не взаимод. с неорг. к-тами (кроме фтористоводородной к-ты). Получают: взаимод. паров Si с W в вакууме при 1150-1350 °С; восстановлением SiCl4 водородом на нагретой до 1100-1800°С пов-сти W; по р-ции 4SiCl2 + + Whttp://www.pora.ru/image/encyclopedia/5/3/9/4539.jpeg WSi2 + 2SiCl4. Образует на изделиях из В. защитные покрытия, устойчивые на воздухе до 2000 °С.

Борид вольфрама (пентаборид дивольфрама) W2B5 - серые кристаллы с металлич. блеском, решетка гексагональная (http://www.pora.ru/image/encyclopedia/5/4/0/4540.jpeg=W2B5; а = 0,292нм, с=1,387нм, пространств, группа С6/mmc); т. пл. 2300 °С (с разл.); плотн. 13,0 г/см3; микротвердость 25800 МПа; на воздухе выше 800°С окисляется. Не раств. в воде. Разлагается царской водкой, а также HNO3 и конц. H2SO4 при кипячении. Получают взаимод. WO3 с В4С и С в вакууме при 1150-1300 °С. Компонент твердых сплавов для режущих инструментов, наплавочных износостойких материалов для стали и чугуна; образует защитные покрытия на В.

Получение. Вольфрамовые руды (содержат 0,15-0,5% WO3) обогащают гравитационными методами, флотацией, магн. и электростатич. сепарацией, а также хим. способами. Для получения В. и его соед. используют рудные концентраты, содержащие 55-65% WO3, иногда 10-20%, направляемые на хим. переработку. Пром. способы извлечения В. из рудных концентратов подразделяют на щелочные (наиб. распространенные) и кислотные. В первом случае вольфрамитовый или шеелитовый концентрат разлагают спеканием с Na2CO3 при 800-900 °С с послед. выщелачиванием спека водой или обработкой р-ром Na2CO3 в автоклаве при 200-225 °С Вольфрамитовые концентраты иногда разлагают нагреванием с р-рами NaOH. Для полного разложения вольфрамита спеканием требуется небольшой избыток Na2CO3 по сравнению со стехиометрически необходимым кол-вом; в случае шеелита в шихту добавляют SiO2 (2CaWO4 + 2Na2CO3 + SiO2 -> 2Na2WO4 + + Ca2SiO4 + 2CO2). Для полного разложения в автоклаве шеелитовых концентратов избыток Na2CO3 должен составлять 250-300%, а в случае вольфрамитовых концентратов - 300-400%. Из образовавшихся водных р-ров Na2WO4 после их очистки от примесей (Si, P, As, Mo, F) действием СаС12 или Ca(NO3)2 осаждают CaWO4, к-рый затем разлагают соляной к-той или HNO3 и выделяют вольфрамовую к-ту. Последнюю прокаливают, получая WO3, или растворяют в водном р-ре NH3, из к-рого выпариванием кристаллизуют паравольфрамат (NH4)10[H2W12O42]*4Н2О. Это соед. м. б. также получено более простым способом - экстракцией водными р-рами солей аминов или четвертичных аммониевых соед. (при рН 2,5-3) с послед. реэкстракцией р-рами NH3. Перспективен метод его получения из р-ров Na2WO4 с использованием ионообменных смол.

По кислотному способу шеелитовые концентраты (с содержанием WO3 65-75%) разлагают к-тами (НС1, HNO3); образующуюся при этом вольфрамовую к-ту раств. в водном р-ре NH3 и затем кристаллизуют в виде паравольфрамата аммония.

Осн. продукты переработки вольфрамовых концентратов - WO3 (получаемый термич. разложением W03-H20 или (NH4)10[H2W12042]*4H20) и ферровольфрам [сплав W (65-80%) и Fe (35-20%), выплавляемый для нужд черной металлургии]. Восстановлением WO3 водородом при 700-900 °С в многотрубных или вращающихся трубчатых печах получают В. в виде порошка разл. гранулометрич. состава (наиб, типичны порошки со средним размером частиц 2-3 мкм). Осн. примесь в порошках - кислород (0,05-0,3%). Получают также порошки В. с присадками оксидов Th, La, Y, A1, а также K2SiO3, к-рые вводят в WO3 перед его восстановлением.

Компактный металл получают преим. методами порошковой металлургии. Заготовки сечением от 10*10 до 20*20 мм и длиной 500-600 мм (штабики) прессуют под давл. 150-500 МПа и подвергают спеканию в две стадии: первая (упрочнение штабика) проводится при 1150-1300 °С в атмосфере Н2, вторая (сварка)-прямым пропусканием электрич. тока при 2900-3000 °С. Плотность штабиков после спекания 17,5-18,5 г/см3. Изделия из них (проволока, лента и др.) изготовляют обработкой давлением при т-рах ниже т-ры рекристаллизации В. По мере обработки т-ра понижается от 1300-1400 °С (при ковке) до 800-500 °С (при волочении или прокатке). В результате волочения через твердосплавные, а затем алмазные фильеры получают вольфрамовую проволоку диаметром 10-300 мкм.

Крупные заготовки (до 300 кг) производят методом гид-ростатич. прессования порошков, помещенных в эластичные оболочки. Такие заготовки спекают в индукционных печах в вакууме или в атмосфере Н2 при 2400-2500 °С. Для получения компактных заготовок используют также дуговую вакуумную плавку или гарнисажную дуговую с разливом металла в изложницу.

В огранич. масштабах В. получают восстановлением его гексагалогенидов, гл. обр. WF6, водородом. При проведении процесса в газовой фазе в потоке получают высокодисперсные порошки, в кипящем слое - крупные сферич. гранулы размером 200-500 мкм. Последние превращают в компактные заготовки горячим газостатич. прессованием. Способ получения изделий восстановлением WF6 (получивший название газофазное формование) заключается в осаждении В. из газовой фазы в виде плотного покрытия на нагретых до 600-700 °С подложках из др. металлов или графита. Методом бестигельной зонной плавки спеченных штабиков получают монокристаллы В., отличающиеся высокой чистотой и пластичностью.

Определение. Качественно В. определяют: по выделению белого аморфного осадка WO3*nH2O при добавлении НС1 или H2SO4 в р-р образца; по образованию вольфрамовой сини при добавлении SnCl2 в кислый р-р образца; по желто-зеленой окраске р-ра в присут. роданид-иона и восстановителя (напр., SnCl2) и др. методами. При большом содержании в анализируемом образце (концентраты, ферровольфрам и др.) В. определяют гравиметрически в виде WO3 (образуется после прокаливания вольфрамовой к-ты или осадков, выделяющихся при действии, напр., цинхонина, бензндина и др.), а также потенциометрич. титрованием солью Cr+ в кислой среде. При низком содержании В. определяют преим. фотометрически по р-ции с роданид-ионами в присут. TiCl3. Для перевода В. в р-р исходную навеску разлагают соляной или азотной к-той, осадок WO3*nH2O раств. в водном р-ре NH3; иногда используют выщелачивание содового плава водой.

Применение. До 50% получаемого В. используют в произ-ве легированных (гл. обр. инструментальных) сталей, важнейшие из к-рых - быстрорежущие, содержащие 8-20% В. Примерно 35-45% В. расходуется на производство твердых сплавов на основе карбида WC (85-95% WC и 5-15% Со). Нек-рые сплавы, кроме WC, содержат TiC, ТаС и NbC. Эти сплавы применяют для изготовления рабочих частей режущих и буровых инструментов, фильер для протяжки проволоки и др. В виде сплавов с др. металлами В. используют в авиац. и ракетной технике, электротехнике; чистый В. - для изготовления спиралей и нитей накаливания в произ-ве электроламп, в электровакуумной технике для изготовления катодов, рентгеновских трубок, сеток, подогревателей катодов, выпрямителей высокого напряжения и др.

Искусственные радиоактивные изотопы В. 181W (T1/2 120сут), 185W (T1/2 78,5 сут) и 187W (T1/2 24 ч) - изотопные индикаторы.

Произ-во вольфрамовых концентратов (65% WO3) в капиталистич. странах 39400 т/год (1978), в т.ч. в США 6300, Таиланде 6200, Боливии 6100, Южной Корее 5000, Австралии 5300, Канаде 4400, Бразилии 2200, Португалии 2100 т/год.

В. открыт в виде WO3 К. Шееле в 1781. Металлич. В. впервые получили X. X. и Ф. д'Элуяры в 1873. В Великобритании, США и Франции употребляется первоначальное название В. - "тангстен" (тунгстен, швед. tungsten, букв. - тяжелый камень).

Лит.: Зеликман А. Н., Крейн О. Е., Самсонов Г. В., Металлургия редких металлов, 3 изд., М., 1978; Зеликман А. Н., Никитина Л. С, Вольфрам, М., 1978; Rollinson С. Pergamon textes in inorganic chemistry, v. 21-The chemistry of Cr, Mo and W, Oxf.-[a.o.]. 1973; YihS.W.H., WangC.T., Tungsten, N. Y., 1978; Gmelins Handbuch der anorganischen Chemie. Wolfram, Bd A. 1, Technologic des Metals, В., 1979. А. Н. Зеликман.


1. www.pravda.ru: Тайна рыцарей короля Артура
24.05.2011
... г. писатель Томас Мэлори заканчивает роман "Смерть Артура". В 1278 г. король Англии Эдуард I посещает Гластонбери и осматривает гробницу Артура в заново отстроенной церкви. За 60-70 лет до этого Вольфрам фон Эшенбах и Роббер де Борон пишут христианские повести и стихотворные поэмы о Святом Граале и его поисках, предпринятыми рыцарями Круглого стола при дворе короля Артура. В 728 — 731 гг. Беда ...
2. www.yoki.ru: Остановленный "Русский вольфрам" на пять лет станет государственным
14.06.2009
... филиал "Русского вольфрама" будет на пять лет передан в аренду государственному предприятию, которое определит администрация края. Такое соглашение подписано сегодня по итогам встречи губернатора региона  Сергея Дарькина ...
3. www.yoki.ru: Те, кто погиб на вольфрамовом руднике в Бурятии, виноваты сами
02.11.2007
... прокуратура Закаменского района рассмотрела возможность возбуждения уголовного дела по факту гибели семи человек на заброшенном вольфрамовом руднике. Трагедия произошла 19 октября на шахте «Разведочная».«Виновных лиц в смерти людей, которые вошли в шахту для незаконной добычи вольфрама, в ходе проверки не ...
4. www.yoki.ru: Бурятские власти закроют шахту-убийцу
22.10.2007
... "Холстосон", отмечается в сообщении.Специализированная следственно-оперативная группа аппарата МВД Бурятии в настоящее время проводит проверку предприятий, занимающихся приемкой вольфрамового концентрата.Также президент республики поручил администрации Закаменского района провести конкурс или аукцион по передаче шахты в аренду. Запасы рудника составляют 40 тыс. тонн ...
5. www.yoki.ru: Из загазованной вольфрамовой штольни в Бурятии поднят еще один старатель-нелегал
21.10.2007
... Бурятии из заброшенной шахты "Разведочная", где в пятницу пропали 19 нелегальных добытчиков вольфрамовой руды, на поверхность был поднят еще один человек. В забое по-прежнему остаются люди. Пока на поверхность смогли подняться 11 человек, четверо найдены мертвыми.Медики сообщают, ...
6. www.yoki.ru: Всемирный день поцелуев сегодня
06.07.2007
... нужно было целовать ноги или даже землю у их ног. В Италии мужчина, поцеловавший девушку на людях, должен был обязательно на ней жениться.( "Авторадио")Американец А.Вольфрам из Миннесоты 15 сентября 1990 г. во время фестиваля, проходившего в его штате, за 8 ч. поцеловал 8001 чел. Таким образом, он ухитрялся целовать человека с частотой в 3,6 сек. Первый поцелуй на ...
7. www.yoki.ru: Сегодня все желающие могут «обмениваться своими душами»
06.07.2007
... Он не был назван по имени человека, который первым соединил свои губы и тут же разжал их с характерным звуком, оставив мокрый отпечаток на щеке подруги.Некий американец А. Е. Вольфрам из Миннесоты за 8 часов поцеловал 8001 человека 15 сентября 1990 г. во время фестиваля, проходившего в его штате. Таким образом, он ухитрялся целовать нового человека через каждые 3,6 секунды. ...
8. www.yoki.ru: Самый острый в мире нож представили в Чикаго
24.11.2006
... срезов толщиной всего в несколько десятков нанометров (нанометр - одна миллиардная часть метра). Нож представляет собой углеродную нанотрубку, натянутую между двумя тонкими вольфрамовыми иглами, и напоминает миниатюрную копию проволочного ножа для резки сыра. Новый нож позволяет изготавливать высококачественные препараты для электронной микроскопии и может стать незаменимым ...




Здоровье и профилактика Акушерство и гинекология Стоматология Красота Зрение Энциклопеди Адреса Реклама
Видео