Журнал о Медицине
rss новости rss статьи rss все архив
Словарь научных терминов

Электронография

ЭЛЕКТРОНОГРАФИЯ, метод исследования атомной структуры в-ва, гл. обр. кристаллов, основанный на дифракции электронов (см. Дифракционные методы). Существует неск. вариантов метода. Основным является Э. на просвет, при этом используют дифракцию электронов высоких энергий (50-300 кэВ, что соответствует длине волны ок. 5-10-3 нм). Э. проводят в спец. приборах - электронографах, в к-рых поддерживается вакуум 10-5-10-6 Па, время экспозиции ок. 1 с, или в трансмиссионных электронных микроскопах (см. Электронная микроскопия). Образцы для исследований готовят в виде тонких пленок толщиной 10-50 нм, осаждая кристаллич. в-во из р-ров или суспензий, либо получая пленки вакуумным распылением. Образцы представляют собой мозаичный монокристалл, текстуру или поликристалл.

http://www.pora.ru/image/encyclopedia/5/8/2/18582.jpeg

Рис. 1. Электронограмма от текстуры In2Se3.

Дифракционная картина - электронограмма - возникает в результате прохождения начального монохроматич. пучка электронов через образец и представляет собой совокупность упорядочение расположенных дифракц. пятен - рефлексов (рис. 1), к-рые определяются расположением атомов в исследуемом объекте. Рефлексы характеризуются межплоскостными расстояниями dhkl в кристалле и интенсивностью Ihkl, где h, k и l - миллеровские индексы (см. Кристаллы). По величинам и по расположению рефлексов определяют элементарную ячейку кристалла; используя также данные по интенсивности рефлексов, можно определить атомную структуру кристалла. Методы расчета атомной структуры в Э. близки к применяемым в рентгеновском структурном анализе. Расчеты, обычно проводимые на ЭВМ, позволяют установить координаты атомов, расстояния между ними и т. д. (рис. 2).

http://www.pora.ru/image/encyclopedia/5/8/3/18583.jpeg

Рис. 2. Кристаллическая структура 2,5-дикетопиперазина, рассчитанная с помощью ЭВМ. Сгущение линий соответствует положениям атомов С, N, О и Н.

Электронографически можно проводить фазовый анализ в-ва (в этом случае совокупность значений Ihkl и dhkl сравнивают с имеющимися банками данных), можно изучать фазовые переходы в образцах и устанавливать геом. соотношения между возникающими фазами, исследовать полиморфизм и политипию. Методом Э. исследованы структуры ионных кристаллов, кристаллогидратов, оксидов, карбидов и нитридов металлов, полупроводниковых соединений, орг. в-в, полимеров, белков, разл. минералов (в частности, слоистых силикатов) и др. Э. часто комбинируют с электронной микроскопией высокого разрешения, позволяющей получать прямое изображение атомной решетки кристалла.
При изучении массивных образцов используют дифракцию электронов на отражение, когда падающий пучок как бы скользит по пов-сти образца, проникая на глубину 5-50 нм. Дифракц. картина в этом случае отражает структуру пов-сти. При этом можно изучать явления адсорбции посторонних атомов, эпитаксию, процессы окисления и т. п. Если кристалл обладает атомной структурой, близкой к идеальной, и дифракция на просвет или на отражение происходит на глубине ~ 50 нм или более, то получается дифракционная картина с т. наз. линиями Кикучи, на основании к-рой можно делать выводы о совершенстве структуры.
В Э. электронов низких энергий (10-300 эВ) электроны проникают на глубину всего в 1-2 атомных слоя. По интенсивности отраженных пучков можно установить строение поверхностной атомной решетки кристаллов. Этим методом установлено отличие поверхностной структуры кристаллов Ge, Si, GaAs, Mo, Au и мн. др. от внутр. структуры, т. е. наличие поверхностной сверхструктуры. Так, напр., для Si на Грани (111) образуется структура, обозначаемая 7 x 7, т. е. период поверхностной решетки в этом случае превышает период внутр. атомной структуры в 7 раз, в др. кристаллах образуются поверхностные решетки 2 х 2, 2 х 4, 4 х 4 и т. п.
В Э. при дифракции в электронном микроскопе применяют др. спец. методы, напр. метод сходящегося пучка и нанодифракции тонкого луча. В первом случае получают дифракц. картины, по к-рым можно определять симметрию (пространств. группу) исследуемого кристалла. Второй метод дает возможность изучать мельчайшие кристаллы с поперечником в неск. нм. Известна также Э. молекул в газах, к-рая позволяет устанавливать строение свободных молекул орг. и неорг. в-в, молекул в парах ряда соединений, напр. галогенидов металлов.

Лит.: Вайнштейн Б. К., Структурная электронография, М., 1956; Высоковольтная электронография в исследовании слоистых минералов, М., 1979; Electron diffraction technique, v. 1-2, ed. by I. M. Cowley, Oxf., 1992-93.

Б. К. Вайнштейн.






Здоровье и профилактика Акушерство и гинекология Стоматология Красота Зрение Энциклопеди Адреса Реклама
Видео